PyTorch 通信原语详解:深度对比 AllReduce、AllGather 与 ReduceScatter
在现代深度学习中,模型和数据集的规模爆炸式增长,使得分布式训练成为常态。PyTorch 的 torch.distributed 包提供了一系列高效的通信原语(Collective Operations),这些原语是实现数据并行(DDP)和模...
在现代深度学习中,模型和数据集的规模爆炸式增长,使得分布式训练成为常态。PyTorch 的 torch.distributed 包提供了一系列高效的通信原语(Collective Operations),这些原语是实现数据并行(DDP)和模...
如何使用 PyTorch FSDP 解决超大模型单卡显存不足问题 随着大语言模型(LLM)的参数量突破百亿甚至万亿级别,传统的分布式训练方案(如DDP,数据并行)已经无法满足需求,因为DDP要求每张GPU都复制完整的模型权重、梯度和优化器状...
在构建大规模深度学习模型训练系统时,参数服务器(Parameter Server, PS)架构是一种常见的解决方案。它将模型参数的存储和更新集中在专用的PS节点上,而Worker节点(训练器)只负责计算梯度并发送给PS。PyTorch 提供...
在构建大型深度学习模型时,分布式数据并行(DDP)是提高训练速度的关键技术。然而,许多人误以为分布式训练只是简单地将模型复制到多张卡上并行计算。事实并非如此,真正的效率瓶颈在于梯度同步。PyTorch DDP通过其独特的梯度桶(Gradie...
在 AI 部署和推理加速的过程中,模型加载速度是影响启动时间和用户体验的关键因素之一。特别是对于拥有数千万甚至数十亿参数的大规模模型,例如大型语言模型(LLMs),加载 state_dict 往往需要大量时间。 本文将深入探讨 PyTorc...
在深度学习训练和推理过程中,我们经常会发现 GPU 使用率不高,或者训练速度远低于预期。这往往不是 GPU 计算慢,而是因为数据加载和预处理(Data I/O)成为了瓶颈,导致 GPU 必须等待 CPU 准备好下一批数据。这种等待被称为“数...
在处理 TB 级别或者需要实时生成的流式数据集时,传统的 PyTorch Dataset(Map-style Dataset,通过 __getitem__ 随机访问)机制会遇到致命的内存瓶颈。因为这类数据集要求在初始化时或者通过索引访问时将...
在PyTorch深度学习训练中,数据加载的速度(即I/O吞吐量)往往是整个训练流程的瓶颈。当尝试使用多进程(num_workers > 0)来加速数据读取时,用户可能会遇到程序锁死、内存暴涨或性能不升反降的问题。本文将深入解析如何通过合理配...
PyTorch 默认使用 NCHW (Batch, Channels, Height, Width) 内存布局,这是一种从科学计算历史遗留下来的传统格式。然而,对于现代视觉模型,尤其是在利用 NVIDIA Tensor Core 或其他高度...
在训练深度学习模型,尤其是如Transformer这类拥有数百甚至数千层的超大模型时,GPU显存往往成为瓶颈。标准的反向传播算法需要存储前向传播中每层的所有中间激活值(Activations),以便在计算梯度时使用,这消耗了大量的显存。当模...